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Oscillatory motion in Benard cell due to the Soret effect 

By J. K. PLATTEN AND G. CHAVEPEYER 
Faculty of Sciences, University of Mons, Belgium 

(Received 21 July 1972 and in revised form 16 March 1973) 

The period of oscillations for the BBnard problem in a two-component system 
taking into account thermal diffusion is given. Schmidt-Milverton plots are pre- 
sented for water-methanol and water-isopropanol systems. Anomalous heating 
curves are observed. Thermocouple responses are given for some heating powers 
and show oscillations in the temperature field. A qualitative agreement exists 
with the predicted values of the period given by the theory. 

1. Introduction 
It is well known that the principle of exchange of stabilities applies for the usual 

BBnard problem (Chandrasekhar 1961, p. 24). However, this is no longer true 
when a second stabilizing force acts on the system, for example, the effect of 
rotation or a magnetic field (Chandrasekhar 1961, p. 114), or a stabilizing solute 
gradient (Veronis 1968; Sani 1965; Nield 1967; Shirtcliffe 1969; Baines & Gill 
1969). Instability may then arise as oscillations of increasing amplitude. 

Recently some importance has been attached to the BBnard problem in a 
two-component system in which an initially homogeneous mixture is subjected to 
a temperature gradient. Then thermal diffusion (also known as the Soret effect; 
see De Groot & Mazur (1962, p. 273)) takes place and as a result, a mass fraction 
distribution is established in the liquid layer. The sense of migration of the 
molecular species is determined by the sign of the Soret coefficient. The total 
density now contains two contributions: 

P = P o ~ ~ - ~ ~ ~ - ~ o ~ f ~ ~ ~ , - ~ 0 ~ 1 .  (1) 

In  (I), iVl is the mass fraction of component I. This new contribution will com- 
pletely change the linear stability analysis of the BBnard problem. The rough 
predictions are as follows. 

(a) When the denser component migrates towards the cold plate (positive 
Soret coefficient), here the upper boundary, we expect the liquid layer to be less 
stable than in the pure-liquid case. 

(b)  Migration of the denser component towards the hot plate (negative Soret 
coefficient), here the lower boundary, produces of course an opposite effect: the 
critical Rayleigh number increases. 

The importance that thermal diffusion could have in the BBnard instability 
was first suggested by Prigogine and an experimental study was reported by 
Legros, Van Hook & Thomaes (1968 a, b ) ;  the same idea was also given by Hurle 
& Jakeman (1969). The linear stability analysis and experiments were then 
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carried out independently by the two groups of researchers: Hurle & Jakeman 
(1969, 1971) and the group at  the University of Brussels directed by Professor 
Prigogine and coworkers at  the Universities of Austin and Mons (Legros et al. 
1968a, b;  Legros, Rasse & Thomaes 1970; Schechter, Prigogine & Hamm 1972; 
Platten 1971; Legros, Platten 65 Poty 1972; Platten & Chavepeyer 1972a, b). 
A stabilizing effect (increase of the critical Rayleigh number) was reported in 
experiments by Legros et al. (1970). The linear stability analysis has been 
performed by Schechter, Prigogine & Hamm and appeared recently in the 
literature (Schechter et al. 1972). They mainly focused their attention on the 
case of exchange of stabilities for rigid boundaries, but noted that overstable 
motions were also possible for negative Soret coefficients. Moreover, in order to 
have a self-adjoint problem, the coefficients of VN and V T  in the starting 
equations were kept constant. In  another publication on the subject, Legros et al. 
(1972) removed the above assumptions. This new formulation leads to a non- 
self-adjoint problem and was solved by a variational method referred to as the 
‘local potential technique’. For positive Soret coefficients the principle of 
exchange of stabilities was found by extrapolation of the numerical results, but 
the conditions for overstability were not clarified in that paper. They were 
obtained later by Platten (1971) for free boundaries and by Platten & Chavepeyer 
(1972 a) for rigid boundaries. A first experimental example of oscillations obtained 
in steady-state conditions (fixed temperature at  the two boundaries) was given 
by Platten & Chavepeyer (1972 b) .  These oscillations were recorded for 10 h. 

Two other recent papers of relevance to the present work are those of Hurle & 
Jakeman (1971) and Caldwell (1970). As has already been stated, Hurle & 
Jakeman investigated exactly the same problem as the other group. Although 
some simplifying assumptions were made in their analysis [which were removed 
in the paper by Legros et al. (1972)], they came essentially to the same conclusions 
regarding the variation of the critical Rayleigh number. The BBnard cell that 
Hurle & Jakeman used was not operated in steady-state conditions, and they 
could only record a few cycles in the temperature field (see figure 10, plate 1, of 
their paper). The second paper of interest is that of Caldwell(l970), who reported 
BBnard experiments in sea water. He obtained heating curves with a negative- 
slope portion and a hysteresis phenomenon. The same features are also observed 
in our experiment described in this paper. The aim of this paper is to give new 
numerical results concerning the frequency of the oscillations after a short review 
of the theory and to present Schmidt-Milverton plots of water-alcohol systems 
and thermocouple responses showing oscillations in the temperature field. 

2. Oscillations in the two-component B6nard problem : theory 
For an incompressible fluid, the conservation equations for mass, momentum 
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As usual, the Boussinesq approximation has been used. Moreover, in (4) we have 
neglected the Dufour effect: the modification of the heat flow due to the concen- 
tration gradient is indeed very small in liquids (but not in gases; see De Groot & 
Mazur 1962, p. 279). Equations (2)-(4) with D’ = 0 are equivalent to the problem 
of a stabilizing solute gradient (with of course different boundary conditions). 
Owing to the sign of D‘, one has now either a stabilizing effect (D’ < 0) or a 
destabilizing effect (D’ > 0). 

When (2)-(4) are linearized in the disturbances, one gets a system of linear 
differential equations with variable coefficients. To avoid this difficulty the 
product N,N2 in the thermal diffusion term of (2) is kept constant, equal to its 
initial value NT I?: and not subject to fluctuations. This new assumption, which 
we shall remove later in the analysis, leads to the following eighth-order dispersion 
equation, after the usual normal-mode analysis and elimination of all the vari- 
ables except the amplitude W of the upward component of the velocity (see 
Platten 1971) and with a time dependence given by exp (at): 

(D2+k2-gPr )  (D’-k’-gSc) ( D 2 - k 2 - g )  (D2-k2)  W 

+ (D2 - k2 - aPr)  E2RT,(Sc/Pr) 9” W 

+(D2-k2-CTSC)k2RaW+(D2-k2)k2RThSP’W = 0. 

The notation is that adopted in the papers by Legros and Platten: 

Pr = Prandtl number = v/K, 
Sc  = Schmidt number = v/D, 
Ra = Rayleigh number = gaAT d3/~v, 

9’ = the Soret number = (D’/D) AT. AT,*. 
a,, = thermal diffusion Rayleigh number = gyNf d3/Kv, 

For free boundaries and at  the marginal state (a = aR+iaI; a, = 0) one has 
(see Platten 1971 for more details) 

It must be kept in mind that all the variables are reduced and thus aI is a dimen- 
sionless frequency. From (6) we recover the conditions for overstability deduced 
elsewhere (Platten. 1971): aI being a real quantity, one has 

9‘ < 0, 

27r4Pr (Pr + 1) 
19’1 > - 

4 S C 2 R T h  ’ 

The dimensional period (in seconds) follows from (6) as 

Ts = 2rd2/vaI. (7)  
20-2 
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Y 

- 2  x 10-3 
- 2 x 10-3 
- 2  x 10-3 
- 2 x 10-3 

- 4  x 10-3 

- 4  x 10-3 

- 2 x 10-3 
- 2 x 10-3 
- 2 x 10-3 

- 2  x 10-3 
- 4 x 10-3 

- 4 ~ 1 0 - ~  

- 6 ~ 1 0 - ~  
- 8 x 
- 10-2 

RTh 

1 0 2  
103 
1 0 4  
105 

1 0 4  

104 
1 0 4  

1 0 4  
104 
1 0 4  

1 0 4  

1 0 4  
1 0 4  
1 0 4  
104 

Sc Pr 

103 10 
103 10 
1 0 3  10 
103 10 

104 10 
1 0 4  100 
104 1000 

1 0 2  10 
103 10 
104 10 

103 10 
1 0 3  10 
103 10 
1 0 3  10 
103 10 

RaC from VI 

potential From local 
for rigid potential for 

local r A > 

boundaries rigid boundaries From (9) 

1759.06 0.2110 x 10-3 0.2112 x 10-3 
1760.7 0.2961 x 0.2954 x 
1777.1 0.3045 x 10-l 0.3038 x lo-' 
1941.4 0,3054 x 10" 0.3047 x loo 
1781.2 0.6130 x 10-1 0.6096 x 10-1 
1795.8 0.6380 x 0.6629 x 
1873.4 0.5389 x lop5 0.5763 x 

1858.2 0,2093 x 10-1 0.2112 x lo-' 
1777.1 0.3045 x 10-1 0.3038 x 10-1 
1767.6 0.3071 x 10-I  0-3048 x 10-l 

1777.1 0.3045 x 10-1 0.3038 x 10-1 
1794.9 0.6099 x 10-I 0.6086 x 10-1 
1812.4 0.9150 x lo-' 0.9134 x 10-1 
1829.5 0.1220 x 10" 0.1218 x 10" 
1846.4 0,1526 x l oo  0.1523 x 10" 

TABLE 1. Square of the dimensionless frequency for the two-component 
B6nard problem. 

A numerica.1 estimation of the period of oscillations for values of the dimensionless 
numbers (Prandtl number, Schmidt number, etc.) compatible with experiments 
in liquids shows that such oscillations can be very easily detected in laboratory 
experiments. The order of magnitude of Ts is, for example, 1 min. 

Equation (7)  can be considerably simplified (see appendix) and gives 

4d2 
3 n ~ [  - a/( 1 + S)];  ' 

Ts N 

The meaning of the new parameter S is very simple: it is a density correction 
factor, i.e. the contribution of the thermal diffusion to the density gradient 
relative to that resulting from the temperature gradient. This parameter was 
first introduced by Schechter et al. (1972). For the pure-liquid case 

S = 0 implies Ts+co. 

No oscillations are possible. From (8) oscillations are possible in the range 

- 1 < S < O .  

When 8 = - 1, the contribution of thermal diffusion to the density gradient is 
equal, but in opposite direction, to the contribution of the temperature gradient. 
When S < - 1, the density gradient becomes stable. 

Two assumptions used previously are incompatible with experiments: (i) two 
free boundaries and (ii) the fact that  the product Nl N2 is replaced by its initial 
value N,* N: and does not vary. This has beenrecognizedfor a long time, and the 
linear stability analysis as well as the conditions for overstability was studied 
without these two unrealistic assumptions (Legros et al. 1972; Platten & 
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Chavepeyer 1972 a) .  I n  that case it was not possible to find an exact analytical 
solution. The problem was solved by a numerical technique (a variational 
method based on the notion of a local potential). I n  this numerical study, the 
attention was focused on the sign of the real part of the amplification factor (T, or 
preferably on the value of the Rayleigh number such that the real part of cr was 
zero. No attempt was made to find the value of the imaginary part of (T ( g I )  a t  
the critical point. We rerun the problem explained in detail in the papers by 
Legors et al. (1972) and Platten & Chavepeyer (1972 a) ,  but we now calculate the 
imaginary part of u a t  the critical point. I n  table 1, the critical Rayleigh number 
Ra and the square of crI, as given by the local potential method are reproduced 
for a few values of the relevant parameters. These results are compared with 
those given by equation (9) for C T ~  (see below). The complete numerical study that 
we have performed involved about 600 determinations of g I  by the local potential 
method. These results show that ( T ~  obeys the law (within a 3 yo error) 

with C, = 0.167629 and C, = 93.5492. It is remarkable that g I  obeys for rigid 
boundaries the same type of law as that expressed by (6) for free boundaries, the 
two constants C, and C, being of course different. From (9)) it is possible to 
recover the conditions for overstability found elsewhere (Platten & Chavepeyer 
1972 a)  : 

Y < 0, 

C2Pr(Pr + I )  
I y I  ' -Sc2 R,, * 

The ratioC,/C, 2: 558 must be compared with the value 554-5 obtained previously, 
when we studied the branch point of the overstability curve on the exchange of 
stabilities curve without determining vI. The agreement is quite acceptable. 

3. Oscillations in the temperature field: experiments 
It has been shown in $ 2  that the conditions for the exchange of stabilities are 

violated for the BBnard problem in a two-component system. Thus instability 
arises as oscillations of increasing amplitude. Although a linear theory is unable 
to predict the new state reached by a system beyond an instability point, it seems 
credible that this new state will not be steady, but fully oscillatory when the 
principle of exchange of stabilities does not apply, and that the magnitude of the 
frequency will be of the same order as that given by a linear theory, provided 
that the difference R, - Rl is small enough. I n  $ 2, the dimensionless frequency 
was given for this problem and the numerical estimates seem to indicate that the 
oscillations could be easily detected. The aim of this part of the paper is to give 
thermocouple records showing, indeed, oscillations in the temperature field. 

The apparatus that we have used is very classical and of very simple design, 
but yet accurate enough for our purpose. The liquid layer is bounded by two 
copper plates of radius 13cm. The depth of the layer, and thus the distance 
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FIGURE 1. Schmidt-Milverton plot for the system with 90 % by weight water 
and 10% ethanol. 

between the two plates, is maintained at the desired value by a nylon joint. The 
upper boundary is kept at  a fixed temperature by water flowing from a constant- 
temperature bath. The lower boundary is heated electrically by a Hewlet6 
Packard regulated power supply (model 895A). This B6nard apparatus is sur- 
rounded by a constant-temperature enclosure. The temperature difference 
between the two plates is recorded versus the heat power. Schmidt-Milverton 
plots (Schmidt & Milverton 1935) are then possible. A thermocouple junction is 
placed inside the liquid layer more or less midway between the two plates. The 
cold junction lies in a thermostat a t  the temperature of the upper boundary. 

The thermocouple response is recorded versus time, for each heat power, for 
several hours (from 4 to 1Oh). A fist experiment was performed on a water- 
ethanol system (10 yo by weight alcohol). The depth of the layer was 3.2 mm. 
Schmidt-Milverton plots are already available for this system (Legros et al. 1970). 
The Soret coefficient is negative and the system is thus stabilized against infini- 
tesimal disturbances. Transition is not observed at  the usual value 1708 of the 
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17 16 17 17 1 7 5  14 17 16 18.5 15.5 17 

FIGURE 2. Temperature records in the water-ethanol system for different heating powers. 
(a )  20.63 W. (b)  21.78 W. ( c )  24.77 W. (d) 29.38 W. 

critical Rayleigh number but for significantly larger values. The heating curve 
that we have obtained (see figure 1)  is quite similar to that of Legros et al. (1970) 
and that of Caldwell (1970) in sea water. The most important feature is the 
negative slope in this curve just beyond the critical point. Such an anomalous 
heating curve is well known and we shall not give more details here. This curve is 
reproduced in figure 1. However, we want to emphasize the thermocouple 
response for 7 particular heat powers of figure 1) labelled A-G. The temperature 
of the upper plate is always 19 0-1 "C. The heating powers corresponding to 
A ,  B and C are respectively 10.08,16-93 and 20.63 W. The thermocouple outputs 
are quite similar and one example is given on figure 2 (a). Very small oscillations 
of short period ( N 14 s) are seen. This period corresponds exactly to the 'heat on- 
heat of€' cycles of the contant-temperature bath in which the cold junction of the 
thermocouple lies. We shall not take into account such oscillations. Thus in 
figure 2 (a)  the thermocouple output is constant in time. The time and tempera- 
ture scales are given between figures 2 (a )  and (b) .  The next heating power of 
interest on figure 1 is labelled D (21.78 W, AT = 4.9 "C). Despite the fact that the 
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FIGURE 3. Schmidt-Milverton plots for two systems. Curve 1 ,  90% by weight water and 
10 yo isopropanol: x , heating power increased; 0, heating power decreased. Curve 2: 
a, pure water. 

heating power is higher, the temperature difference between the two plates is 
smaller than for the previous measurement (point G). After a transient period, 
oscillations in the temperature field appear and persist (at least at first sight) as 
long as the heating power is held at the desired value. The thermocouple response 
that we reproduce in figure 2 ( b )  was recorded after 15 h. These oscillations are 
quite regular. In  graph (i) of figure 2 (b ) ,  the period is given in arbitrary units 
(10 units = 1 min). The same features are also observed for the heating power 
labelled E on figure 1. For a heating power of 24.77 W (AT = 5-23 "C; point F )  we 
leave the negative-slope part of the heating curve and we are far from the critical 
point. Nevertheless oscillations are always present (figure 2 c (i)) but become more 
irregular. After several hours (more or less one night) the period changes con- 
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4 
FIGURE 4. Temperature records in the water-isopropanol system for 

different heating powers. 

4 min 

FIGURE 5. Oscillations in a water-ethanol mixture. 

siderably (figure 2c(ii)). The reason for this change is not yet understood, the 
experimental situation being of course unchanged. 

For larger heating powers (e.g. point G of figure 1, at 29*38W, AT = 5.72 “C), 
there are always oscillations, but of very large period and small amplitude (see 
figure 2 d) .  Figure 2 (e) shows oscillations in the temperature field beyond the 
critical value. At a time indicated by the arrow, the heat power is lowered below 
the critical point. The mean temperature decreases with oscillations of decreasing 
amplitude. After a few minutes ( N 7) the system has reached a non-oscillatory 
steady state. 

The experiments were repeated for the water-isopropanol system (90 yo by 
weight water and 10% alcohol), for which the Soret coefficient is not available. 
The Schmidt-Milverton plot is reproduced in figure 3. Two main features are 
once more seen. 

(a) Curve 1 is divided into a ‘pure condition’ regime, from the origin to A 
(part (a ) ) ,  a part (b )  of negative slope and the ‘conduction+ convection’ regime 
(part ( c ) ) .  When W ,  and thus AT, is increased, we expect instability a t  point B 
but thermal diffusion prevents this instability. The temperature difference 
between B and A is a measure of the increase of the critical Rayleigh number pre- 
dicted by the linear stability analysis. This increase of 40 yo is not in contra- 
diction with previous theoretical results. At A ,  instability sets in and convection 
destroys the mass fraction distribution, inside the liquid layer. 
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(6) When the heat power is decreased from its maximum value, the curve is 
not retraced. (It should be kept in mind that all measurements were taken in 
steady-state conditions.) This hysteresis loop in AT was really important. 

In  figure 3 curve 2 refers to pure water. Thermocouple records for the 'water- 
isopropanol' system are given in figure 4. No oscillations are recorded before the 
instability point. The thermocouple output is similar to that shown on figure 2 (a). 
Just beyond the expected instability point, but very near to it, large temperature 
fluctuations are recorded, but no oscillations (see figure 4a) .  This was of course 
unexpected but it may be that the initial fluctuation could have an influence on 
the state reached by the system. The heating power is raised a little above the 
value imposed in the previous measurement. After a short transient period, 
oscillations appear with approximately the same period (70-75 s) (figure 4 6). 
They were recorded for several hours, but the regularity became worse. After 
10 h, with the same heating power as in figure 4 (b) ,  the oscillations are always 
present, but the period is quite different (figure 4c); if the heating power is 
lowered, the oscillations disappear immediately. The same experiment was 
repeated in pure water (curve 2 of figure 3). The temperature records before 
instability and for different heating powers in the presence of convection show 
no oscillations. Thus the introduction of small amounts of alcohol (ethanol or 
isopropanol) induces oscillations. We believe that this phenomenon is really 
connected with thermal diffusion. 

The same experiment was repeated with a different depth in the water- 
ethanol system: 4.73mm. Of course the critical point was lowered and the 
importance of the negative-slope part of figure 1 was reduced. But in that part 
of the heating curve, oscillations were reproduced (see figure 5 ;  the time scale is 
different from that of the previous figure). As expected, the period of the oscilla- 
tions increases with the depth of the liquid layer. The mean period seems to 
change slightly with time. Figure5 (a)gives the time evolution of the temperature 
4 h after the heat power has been set to a value such that the resulting tempera- 
ture gradient exceeds the critical one. The mean period in figure 5 (a)  is 177s. 
Figure 5 (6) reproduces oscillations after 8 h. The mean period is now 183s. 
Oscillations in figure 5 (c) are recorded after 12 h with a mean period of 200 s. 

Since the bulk of this manuscript was prepared, we have changed the method 
of detecting oscillations, substituting for the thermocouples a negative tem- 
perature coefficient resistor (NTC). We have used a NTC resistor from M.B.L.E., 
type R 634*01/6K8. The temperature dependence of the resistance is given by 
R = A eBiT with A = 0.03321 IQ and B = 3633.28 OK, and thus 

(dR/dT)soooK E - 243 Q/"K. 

This instrument is thus very sensitive. This NTC resistor placed in the liquid 
layer forms one of the resistances of a Wheatstone bridge. Our experimental 
device allows us to detect variations of the order of 0.001 OK and make absolute 
measurements precise to within 0.01 OK. The experiments were repeated in a 
water-isopropanol system. Beyond the instability point, oscillations were once 
more recorded (see figure 6 a ) .  For the same sensitivity of our recorder system 
as in figure 6 (a) ,  the temperature before the instability point is a straight line. 
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Of course, at higher sensitivity, fluctuations of about 0-01 "K are recorded 
before instability and a t  the critical point these fluctuations increase in ampli- 
tude and become regular in frequency, and the fully developed oscillations are 
off the scale of the record paper. The sensitivity is reduced in order to record 
oscillations on the scale of the record paper as shown in figure 6 (a ) .  Being very 
patient, we have tried to approach as close as possible to the critical point. Very 
regular oscillations are then observed (see figure 6 ( b ) ;  the time scale is different) 
and recorded with the same regularity for more than 10 h. 

4. Summary of the experimental results and comparison with the theory 
First of all, the theory presented in $2 is only valid at the critical point. 

Beyond the critical point, many wavenumbers are amplified and thus many 
frequencies should be present in the thermocouple response. A Fourier analysis 
should then be made. We shall thus only compare with the theory the experi- 
mental period concerning the point the nearest the critical one, in order to have 
only one frequency present. For instance, this seems to be the case for figure 2 (b) .  
A second difficulty arises when one tries to evaluate the different dimensionless 
numbers for the mixtures considered. The transport coefficients a t  a given 
composition and temperature are not always available in the literature. 

We summarize in table 2 the experimental and calculated values of the period. 
The experimental values of the period for d = 3.2mm are taken from figures 
2 ( b )  and 4 ( b )  for the water-ethanol and water-isopropanol systems respectively 
while the value for d = 4.73 mm comes from figure 5. 

The calculated period for the water-ethanol system with d = 3.2 mm is found 
as follows. The temperature of the upper boundary was 19°C and the critical 
temperature gradient 5-25 "C (see figure 1). Thus the mean temperature a t  which 
the transport coefficients are evaluated is 2106°C. Most of the transport co- 
efficients are obtained by linear interpolation between the values given in 
Lunge's Handbook of Chemistry (1967, revised 10th edn.). We obtain in this 
way for the expansion coefficients 

a -1 (9) 2-93 10-4oc-1, 
P A T ,  

(9) 2: 1.462 x loM1, 
A N  

for the kinematic viscosity v = s/p = 1.497cst and for the heat diffusivity 
K = h/pc, N 1-329 x IO-3cm2ls. Estimation of the Soret coefficient (from Legros 
1971) gives 

Thus we find for the dimensionless parameters 

D ' p  N - 10-3 OC-1. 

Pt' = V / K  2i 11.26, 

E - 111.6. 
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Experimental Calculated 
-m -7 

System d = 3.2mm d = 4.73mm d = 3.2mm d = 4.73mm 

90% water and 10 yo 101.5 s 180-200 s 117 s 220 s 
ethanol by weight 

90 % water and 10 yo 
isopropanol by weight 

64 s - 70 s - 

TABLE 2 

We next evaluate the dimensionless frequency using (9). The last term in (9) may 
be dropped because of the large value of the Schmidt number (Sc N 1 O + 3 ) .  We get 

and thus 
( T ~  N 0.368 

T, = 27rd2/vcr, = 117 s for d = 3.2mm. 

We want to know if the period of the oscillations is indeed proportional to d2. 
Thus, we start with the experimental period of 101.5s for d = 3.2mm in the 
water-ethanol system and multiply this experimental result by the square of the 
ratio of the two depths 3.2 mm and 4.73 mm. We obtain in this way 220 s for the 
calculated value of T, for d = 4.73mm. 

The period of 64s for the water-isopropanol system for d = 3.2 mm is a very 
approximate value, owing to the lack of experimental data. However, it was 
shown by Platten (1971) that the critical Rayleigh number RaC obeys, in the 
case of overstability, the law 

Pr 
- RTh 9' - ( 1 + Sc) (SC + Pr) 

sc=  1+Pr' 
Rae = 657.5 

I f  Sc 9 Pr, which is true for water-alcohol systems, then this equation reduces to 

RaC !?! 657.5 -RThY'[Pr/(Pr + I)]. 

This is of course only true for free boundaries, but this last equation shows that 
for 9' < 0 the stabilizing effect is proportional to RThy'. Let us suppose that 
this is also true for rigid boundaries, thus 

RaC- 1708 N -RThY'[Pr/(Pr+ I)]. 

But 

where S(ATc) is the stabilizing effect measured in units of AT in Schmidt- 
Milverton plots. Clearly for water and isopropanol (see figure 3) 

RaC - 1708 = [gaS(ATc) d 3 ] / ~ v ,  

&(ATc) = l!PA-TB\ = (5.45-3.95)OC. 

Moreover, suppose that coefficients such as v ,  K and a, and thus Sc and Pr, are not 
really different in water-ethanol and water-isopropanol systems. Then using the 
subscripts e and i respectively for the water-ethanol and water-isopropanol 
systems 

CRThy'1e 

6(ATc)i CRThy1i 

- -- 
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and consequently owing to (9) we get for the period of oscillations 

Ti = T, r-]*, 
or from figures 1 and 3 

317 

What we have shown is that the period of oscillations decreases when the 
stabilizing effect increases. The order of magnitude is also predicted. 

5. Conclusions 
As predicted by the linear theory, oscillations are indeed observed in the two- 

component BBnard problem for systems with negative Soret coefficients. The 
order of magnitude of the period of oscillations is predicted by the linear theory 
and confirmed by experiments. They show that this period increases with the 
depth of the liquid layer and decreases with the magnitude of the stabilizing 
effect. This is also in agreement with the theory. These oscillations are really 
induced by thermal diffusion. They never appear in pure fluids. 

We are deeply indebted to Professor I. Prigogine and Professor P. Glansdorff, 
whose continuous interest and stimulating comments were indispensible for the 
realization of this work. One of us (G.C.) wishes to thank the Institut pour 
1’Encouragement de Ia Recherche Scientifique dans I’Industrie et 1’Agriculture 
(I.R.S.I.A. Brussels) for a grant. 

Appendix : simplifications involved in (8) 
Suppose that the conditions of overstability are firmly established: 

27n4 Pr(Pr + 1)  
19’1 B 4 RT,SC2 * 

This is usually the case in the liquid phase. For example, with Pr = 10, 
R,, = 4 x lo3, Sc = lo3, D‘/D = - and I?: = 4, equation (A 1) requires that 
at  the critical point 

Equation (7) then reduces to 
AT B 0.05 “C. 

2Td2 
Y[ - R,,9‘ /3  Pr(Pr + I)]* 

Ts 2: 

The critical temperature gradient ATC, hidden inY‘, is included in the right-hand 
side of (A 2). We wish to express the period of oscillations at the critical point, as 
a function of the properties of the liquid only. It was shown by Platten (1971) that 
the critical Rayleigh number in the case of overstability was given by 

Pr 
RThY- 

27n4 (1 + Sc) (Sc + Pr) Rae = - -- 
4 sc2 Pr+ 1’  



318 J .  K .  Platten and G .  Chavepeyer 

From ( A  3 )  we deduce the critical temperature difference between the two plates: 

( 1  + Sc) (Xc + Pr) D‘ 
Sc2 (Pr + 1 )  

Equation (A 4) is substituted into (A 2) to give 

(A 5 )  
- 27n4Ng(1+Xc) ( S c f P r )  

Equation (AS) relates the period of oscillations to the properties of the liquid 
layer. 

Further simplifications involve 

S C ~  1 or Pr, P r >  1 .  (A 6) 

This is quite acceptable for usual organic mixtures, but inadequate for gases or 
liquid metals. This leads to 

where S = YD’ -- N: N g .  
ED 

The physical meaning of S is very clear. Indeed, 

Thus S can be viewed as 

the contribution of the thermal diffusion to the density gradient relative to that 
resulting from the temperature gradient. One also has 

a p t  lax  = po &AT( 1 + S )  . (A 9) 
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FIGURE 6. Oscillations in a water-isopropanol mixture, using a 
NTC resistor as a probe. 
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